熒光光纖氧氣測(cè)量技術(shù)具有高精確度、高可靠性,、響應(yīng)時(shí)間短,、適用于氣相和液相等優(yōu)勢(shì),因此隨著技術(shù)的問(wèn)世,,精確,、高通量測(cè)量微小生物的呼吸和評(píng)估其能量代謝成為可能。高通量呼吸測(cè)量系統(tǒng)基于熒光光纖氧氣測(cè)量技術(shù),,能夠?qū)壍任⑿⌒屠ハx(chóng),、蟲(chóng)卵、蛹,、線蟲(chóng),、土壤動(dòng)物等微小型無(wú)脊椎動(dòng)物進(jìn)行測(cè)量,測(cè)定其耗氧量,,進(jìn)而評(píng)估其代謝水平,。系統(tǒng)在昆蟲(chóng)生理生態(tài)學(xué)、比較生物學(xué),、實(shí)驗(yàn)生物學(xué),、污染生態(tài)學(xué)與環(huán)境毒理學(xué)、環(huán)境科學(xué),、氣候變化研究等領(lǐng)域具有越來(lái)越重要的應(yīng)用價(jià)值,。

果蠅卵、幼蟲(chóng),、蛹,、成蟲(chóng)的耗氧率測(cè)定

左圖:果蠅卵、幼蟲(chóng),、蛹耗氧率的比較,;右圖:果蠅成蟲(chóng)耗氧率(麻醉處理VS對(duì)照)
系統(tǒng)由內(nèi)置熒光光纖氧氣傳感器的微型呼吸室、氧氣測(cè)量主機(jī)及數(shù)據(jù)采集分析軟件組成,,可對(duì)96個(gè)通道的樣品進(jìn)行同步測(cè)量,。
功能特點(diǎn)
- 氧氣測(cè)量高精度、高可靠性,、低功耗,、低交叉敏感性、快速響應(yīng)時(shí)間
- 輕松校準(zhǔn)
- 非侵入性和非破壞性測(cè)量
- 緊湊設(shè)計(jì),,適用于溫控培養(yǎng)箱和/或搖床
- 氣體氧和溶解氧均可測(cè)量
技術(shù)參數(shù)
- 檢測(cè)技術(shù):光纖氧傳感器技術(shù),。
- 適用場(chǎng)景:原位檢測(cè),可在培養(yǎng)箱里或搖床上使用,,便于溫度控制,。
- 呼吸室:透明聚苯乙烯材質(zhì),,支持預(yù)消毒處理,可重復(fù)使用,。
- 氧氣測(cè)量主機(jī):?jiǎn)蝹€(gè)重670 g,,162 x 102 x 32 mm
- 主機(jī)內(nèi)置溫度傳感器:0-50°C,分辨率012°C,,精度±0.5°C
- 主機(jī)內(nèi)置壓強(qiáng)傳感器:300-1100mbar,分辨率11mbar,,精度±6mbar
- 最大采樣頻率:?jiǎn)瓮ǖ兰せ顣r(shí)可達(dá)10-20次每秒
- 氧氣測(cè)量精度:±0.1% O2@1% O2或±0.05 mg/L@0.44 mg/L
- 氧氣測(cè)量分辨率:01% O2@1% O2或0.005 mg/L@0.44 mg/L
- 電源:5VDC,,USB供電
- 響應(yīng)時(shí)間<30s
- 通道數(shù):96

左圖:封閉呼吸室中的苜蓿切葉蜂子脾和蛹;右圖:高通量呼吸系統(tǒng)和傳統(tǒng)呼吸測(cè)量法的結(jié)果比較

苜蓿切葉蜂耗氧率(V?O2)隨溫度的變化曲線
參考文獻(xiàn)
- Clavé, C., Sugio, A., Morlière, S., Pincebourde, S., Simon, J.-C., Foray, V., 2022. Physiological costs of facultative endosymbionts in aphids assessed from energy metabolism. Functional Ecology 36, 2580–2592.
- Earls, K.N., Campbell, J.B., Rinehart, J.P., Greenlee, K.J., 2023. Effects of temperature on metabolic rate during metamorphosis in the alfalfa leafcutting bee. Biology Open 12, bio060213.
- Owen, C.A., Coetzee, J.A., Van Noort, S., Austin, A.D., 2017. Assessing the morphological and physiological adaptations of the parasitoid wasp E chthrodesis lamorali for survival in an intertidal environment. Physiol. Entomol 42, 173–180.
- Uno, H., Stillman, J.H., 2020. Lifetime eurythermy by seasonally matched thermal performance of developmental stages in an annual aquatic insect. Oecologia 192, 647–656.
- Glass, B.H., Jones, K.G., Ye, A.C., Dworetzky, A.G., Barott, K.L., 2023. Acute heat priming promotes short-term climate resilience of early life stages in a model sea anemone. PeerJ 11, e16574.
- G?pel, T., Burggren, W.W., 2024. Temperature and hypoxia trigger developmental phenotypic plasticity of cardiorespiratory physiology and growth in the parthenogenetic marbled crayfish, Procambarus virginalis Lyko, 2017. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 288, 111562.
- K?mmer, N., Reimann, T., Ovcharova, V., Braunbeck, T., 2023. A novel automated method for the simultaneous detection of breathing frequency and amplitude in zebrafish (Danio rerio) embryos and larvae. Aquatic Toxicology 258, 106493.
- Karlsson, K., S?reide, J.E., 2023. Linking the metabolic rate of individuals to species ecology and life history in key Arctic copepods. Mar Biol 170, 156.
- Mathiron, A.G.E., Gallego, G., Silvestre, F., 2023. Early-life exposure to permethrin affects phenotypic traits in both larval and adult mangrove rivulus Kryptolebias marmoratus. Aquatic Toxicology 259, 106543.
- Pettersen, A.K., Metcalfe, N.B., Seebacher, F., 2024. Intergenerational plasticity aligns with temperature-dependent selection on offspring metabolic rates. Philosophical Transactions of the Royal Society B: Biological Sciences 379, 20220496.