熒光光纖氧氣測(cè)量技術(shù)具有高精確度、高可靠性,、響應(yīng)時(shí)間短,、適用于氣相和液相等優(yōu)勢(shì),因此隨著技術(shù)的問世,,精確,、高通量測(cè)量微小生物的呼吸和評(píng)估其能量代謝成為可能。高通量呼吸測(cè)量系統(tǒng)基于熒光光纖氧氣測(cè)量技術(shù),,能夠?qū)?strong>斑馬魚的胚胎及幼魚進(jìn)行測(cè)量,,測(cè)定其耗氧量,進(jìn)而評(píng)估其代謝水平。系統(tǒng)在生物醫(yī)學(xué),、實(shí)驗(yàn)生物學(xué),、污染生態(tài)學(xué)與環(huán)境毒理學(xué)、環(huán)境科學(xué),、氣候變化研究等領(lǐng)域具有越來越重要的應(yīng)用價(jià)值,。
左:斑馬魚微型呼吸室;右:斑馬魚高通量呼吸代謝測(cè)量系統(tǒng)測(cè)量原理
系統(tǒng)由內(nèi)置熒光光纖氧氣傳感器的微型呼吸室,、氧氣測(cè)量主機(jī)及數(shù)據(jù)采集分析軟件組成,,可對(duì)96個(gè)通道的樣品進(jìn)行同步測(cè)量。
功能特點(diǎn)
- 氧氣測(cè)量高精度,、高可靠性,、低功耗、低交叉敏感性,、快速響應(yīng)時(shí)間
- 輕松校準(zhǔn)
- 非侵入性和非破壞性測(cè)量
- 緊湊設(shè)計(jì),適用于溫控培養(yǎng)箱和/或搖床
技術(shù)參數(shù)
- 檢測(cè)技術(shù):光纖氧傳感器技術(shù),。
- 適用場(chǎng)景:原位檢測(cè),,可在培養(yǎng)箱里或搖床上使用,便于溫度控制,。
- 呼吸室:透明聚苯乙烯材質(zhì),,支持預(yù)消毒處理,可重復(fù)使用,。
- 氧氣測(cè)量主機(jī):?jiǎn)蝹€(gè)重670 g,,162 x 102 x 32 mm
- 主機(jī)內(nèi)置溫度傳感器:0-50°C,分辨率012°C,,精度±0.5°C
- 主機(jī)內(nèi)置壓強(qiáng)傳感器:300-1100mbar,,分辨率11mbar,精度±6mbar
- 最大采樣頻率:?jiǎn)瓮ǖ兰せ顣r(shí)可達(dá)10-20次每秒
- 氧氣測(cè)量精度:±0.1% O2@1% O2或±0.05 mg/L@0.44 mg/L
- 氧氣測(cè)量分辨率:01% O2@1% O2或0.005 mg/L@0.44 mg/L
- 電源:5VDC,,USB供電
- 響應(yīng)時(shí)間<30s
- 通道數(shù):96
- 系統(tǒng)適配其他魚類的胚胎及幼魚
- 可選配斑馬魚成魚的靜態(tài)及動(dòng)態(tài)呼吸測(cè)量系統(tǒng)
左圖:環(huán)境污染物6PPD和6PPD醌對(duì)斑馬魚幼魚呼吸的影響(Varshney et al., 2022),;
右圖:小丑魚幼魚在不同溫度下的代謝率(Moore et al., 2023)
參考文獻(xiàn)
- Feng, W.-W., Chen, H.-C., Audira, G., Suryanto, M.E., Saputra, F., Kurnia, K.A., Vasquez, R.D., Casuga, F.P., Lai, Y.-H., Hsiao, C.-D., Hung, C.-H., 2024. Evaluation of Tacrolimus’ Adverse Effects on Zebrafish in Larval and Adult Stages by Using Multiple Physiological and Behavioral Endpoints. Biology (Basel) 13, 112.
- Glass, B.H., Jones, K.G., Ye, A.C., Dworetzky, A.G., Barott, K.L., 2023. Acute heat priming promotes short-term climate resilience of early life stages in a model sea anemone. PeerJ 11, e16574.
- Heuer, R.M., Wang, Y., Pasparakis, C., Zhang, W., Scholey, V., Margulies, D., Grosell, M., 2023. Effects of elevated CO2 on metabolic rate and nitrogenous waste handling in the early life stages of yellowfin tuna (Thunnus albacares). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 280, 111398.
- K?mmer, N., Reimann, T., Ovcharova, V., Braunbeck, T., 2023. A novel automated method for the simultaneous detection of breathing frequency and amplitude in zebrafish (Danio rerio) embryos and larvae. Aquatic Toxicology 258, 106493.
- Louhi, P., Pettinau, L., H?rk?nen, L.S., Anttila, K., Huusko, A., 2023. Carryover effects of environmental stressors influence the life performance of brown trout. Ecosphere 14, e4361.
- Mandic, M., Pan, Y.K., Gilmour, K.M., Perry, S.F., 2020. Relationships between the peak hypoxic ventilatory response and critical O2 tension in larval and adult zebrafish ( Danio rerio ). Journal of Experimental Biology jeb.213942.
- Mathiron, A.G.E., Gallego, G., Silvestre, F., 2023. Early-life exposure to permethrin affects phenotypic traits in both larval and adult mangrove rivulus Kryptolebias marmoratus. Aquatic Toxicology 259, 106543.
- Moore, B., Jolly, J., Izumiyama, M., Kawai, E., Ryu, T., Ravasi, T., 2023. Clownfish larvae exhibit faster growth, higher metabolic rates and altered gene expression under future ocean warming. Science of The Total Environment 873, 162296.
- Park, K.-H., Ye, Z., Zhang, J., Hammad, S.M., Townsend, D.M., Rockey, D.C., Kim, S.-H., 2019. 3-ketodihydrosphingosine reductase mutation induces steatosis and hepatic injury in zebrafish. Sci Rep 9, 1138.
- Ricarte, M., Prats, E., Montemurro, N., Bedrossiantz, J., Bellot, M., Gómez-Canela, C., Raldúa, D., 2023. Environmental concentrations of tire rubber-derived 6PPD-quinone alter CNS function in zebrafish larvae. Science of The Total Environment 896, 165240.
- Saputra, F., Lai, Y.-H., Roldan, M.J.M., Alos, H.C., Aventurado, C.A., Vasquez, R.D., Hsiao, C.-D., 2023. The Effect of the Pyrethroid Pesticide Fenpropathrin on the Cardiac Performance of Zebrafish and the Potential Mechanism of Toxicity. Biology 12, 1214.
- Schuster, L., Cameron, H., White, C.R., Marshall, D.J., 2021. Metabolism drives demography in an experimental field test. Proceedings of the National Academy of Sciences 118, e2104942118.
- Scovil, A.M., Boloori, T., de Jourdan, B.P., Speers-Roesch, B., 2023. The effect of chemical dispersion and temperature on the metabolic and cardiac responses to physically dispersed crude oil exposure in larval American lobster (Homarus americanus). Marine Pollution Bulletin 191, 114976.
- Varshney, S., Gora, A.H., Kiron, V., Siriyappagouder, P., Dahle, D., K?gel, T., ?rnsrud, R., Olsvik, P.A., 2023. Polystyrene nanoplastics enhance the toxicological effects of DDE in zebrafish (Danio rerio) larvae. Science of The Total Environment 859, 160457.
- Varshney, S., Gora, A.H., Siriyappagouder, P., Kiron, V., Olsvik, P.A., 2022. Toxicological effects of 6PPD and 6PPD quinone in zebrafish larvae. Journal of Hazardous Materials 424, 127623.
- Varshney, S., Lund?s, M., Siriyappagouder, P., Kristensen, T., Olsvik, P.A., 2024. Ecotoxicological assessment of Cu-rich acid mine drainage of Sulitjelma mine using zebrafish larvae as an animal model. Ecotoxicology and Environmental Safety 269, 115796.
- Wang, Y., Pasparakis, C., Grosell, M., 2021. Role of the cardiovascular system in ammonia excretion in early life stages of zebrafish ( Danio rerio ). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 321, R377–R384.