熒光光纖氧氣測量技術(shù)具有高精確度,、高可靠性、響應(yīng)時間短,、適用于氣相和液相等優(yōu)勢,,因此隨著技術(shù)的問世,,精確、高通量測量微小生物的呼吸和評估其能量代謝成為可能,。高通量呼吸測量系統(tǒng)基于熒光光纖氧氣測量技術(shù),,能夠?qū)壍任⑿⌒屠ハx、蟲卵,、蛹,、線蟲、土壤動物等微小型無脊椎動物進(jìn)行測量,,測定其耗氧量,,進(jìn)而評估其代謝水平。系統(tǒng)在昆蟲生理生態(tài)學(xué),、比較生物學(xué),、實(shí)驗(yàn)生物學(xué)、污染生態(tài)學(xué)與環(huán)境毒理學(xué),、環(huán)境科學(xué),、氣候變化研究等領(lǐng)域具有越來越重要的應(yīng)用價值。
果蠅卵,、幼蟲,、蛹、成蟲的耗氧率測定
左圖:果蠅卵,、幼蟲,、蛹耗氧率的比較;右圖:果蠅成蟲耗氧率(麻醉處理VS對照)
系統(tǒng)由內(nèi)置熒光光纖氧氣傳感器的微型呼吸室,、氧氣測量主機(jī)及數(shù)據(jù)采集分析軟件組成,,可對96個通道的樣品進(jìn)行同步測量。
功能特點(diǎn)
- 氧氣測量高精度,、高可靠性,、低功耗、低交叉敏感性,、快速響應(yīng)時間
- 輕松校準(zhǔn)
- 非侵入性和非破壞性測量
- 緊湊設(shè)計,,適用于溫控培養(yǎng)箱和/或搖床
- 氣體氧和溶解氧均可測量
技術(shù)參數(shù)
- 檢測技術(shù):光纖氧傳感器技術(shù)。
- 適用場景:原位檢測,,可在培養(yǎng)箱里或搖床上使用,便于溫度控制,。
- 呼吸室:透明聚苯乙烯材質(zhì),,支持預(yù)消毒處理,可重復(fù)使用,。
- 氧氣測量主機(jī):單個重670 g,,162 x 102 x 32 mm
- 主機(jī)內(nèi)置溫度傳感器:0-50°C,,分辨率012°C,精度±0.5°C
- 主機(jī)內(nèi)置壓強(qiáng)傳感器:300-1100mbar,,分辨率11mbar,,精度±6mbar
- 最大采樣頻率:單通道激活時可達(dá)10-20次每秒
- 氧氣測量精度:±0.1% O2@1% O2或±0.05 mg/[email protected] mg/L
- 氧氣測量分辨率:01% O2@1% O2或0.005 mg/[email protected] mg/L
- 電源:5VDC,USB供電
- 響應(yīng)時間<30s
- 通道數(shù):96
左圖:封閉呼吸室中的苜蓿切葉蜂子脾和蛹,;右圖:高通量呼吸系統(tǒng)和傳統(tǒng)呼吸測量法的結(jié)果比較
苜蓿切葉蜂耗氧率(V?O2)隨溫度的變化曲線
參考文獻(xiàn)
- Clavé, C., Sugio, A., Morlière, S., Pincebourde, S., Simon, J.-C., Foray, V., 2022. Physiological costs of facultative endosymbionts in aphids assessed from energy metabolism. Functional Ecology 36, 2580–2592.
- Earls, K.N., Campbell, J.B., Rinehart, J.P., Greenlee, K.J., 2023. Effects of temperature on metabolic rate during metamorphosis in the alfalfa leafcutting bee. Biology Open 12, bio060213.
- Owen, C.A., Coetzee, J.A., Van Noort, S., Austin, A.D., 2017. Assessing the morphological and physiological adaptations of the parasitoid wasp E chthrodesis lamorali for survival in an intertidal environment. Physiol. Entomol 42, 173–180.
- Uno, H., Stillman, J.H., 2020. Lifetime eurythermy by seasonally matched thermal performance of developmental stages in an annual aquatic insect. Oecologia 192, 647–656.
- Glass, B.H., Jones, K.G., Ye, A.C., Dworetzky, A.G., Barott, K.L., 2023. Acute heat priming promotes short-term climate resilience of early life stages in a model sea anemone. PeerJ 11, e16574.
- G?pel, T., Burggren, W.W., 2024. Temperature and hypoxia trigger developmental phenotypic plasticity of cardiorespiratory physiology and growth in the parthenogenetic marbled crayfish, Procambarus virginalis Lyko, 2017. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 288, 111562.
- K?mmer, N., Reimann, T., Ovcharova, V., Braunbeck, T., 2023. A novel automated method for the simultaneous detection of breathing frequency and amplitude in zebrafish (Danio rerio) embryos and larvae. Aquatic Toxicology 258, 106493.
- Karlsson, K., S?reide, J.E., 2023. Linking the metabolic rate of individuals to species ecology and life history in key Arctic copepods. Mar Biol 170, 156.
- Mathiron, A.G.E., Gallego, G., Silvestre, F., 2023. Early-life exposure to permethrin affects phenotypic traits in both larval and adult mangrove rivulus Kryptolebias marmoratus. Aquatic Toxicology 259, 106543.
- Pettersen, A.K., Metcalfe, N.B., Seebacher, F., 2024. Intergenerational plasticity aligns with temperature-dependent selection on offspring metabolic rates. Philosophical Transactions of the Royal Society B: Biological Sciences 379, 20220496.